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Experimental study of the instabilities of waves 
obliquely incident on a beach 
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(Received 21 September 1978 and in revised form 20 November 1978) 

Monochromatic waves obliquely incident on a plane beach, and strongly reflected 
there, are unstable to perturbations by edge waves. Theory suggests the possible 
width of the resonant edge wave frequency band. Experiments on beaches with 
absorbers a t  both ends show that the excited waves have frequencies at  the centre 
of the band, as predicted by Guza & Bowen (1975). Advection by mean longshore 
currents must be taken into account. If reflectors are placed a t  the beach ends, the 
additional boundary conditions apparently lead to resonances scattered across the 
resonant band. 

1. Introduction 
A monochromatic unidirectional wave train incident from deep water on a uniformly 

sloping beach (and strongly reflected there) can exchange energy with edge-wave 
perturbations in a nonlinear resonant triad. For the case of normally incident waves, 
Guza & Davis (1974) showed that the most rapidly growing edge-wave perturbation 
consists of two progressive edge waves (each of half the frequency of the incident wave) 
but travelling in opposite directions resulting in a standing subharmonic edge wave. 
Guza & Inman (1975) observed this pattern in laboratory experiments and investi- 
gated the importance of the spacing of reflective barriers at the beach ends. They found 
the spacing to be crucial (especially for long edge waves) since it imposes boundary 
conditions which restrict the possible edge wave modes, and also guarantees a certain 
symmetry between up and down coast propagating waves. The edge waves formed 
beach cusps when sand tracers were placed on the concrete laboratory beach. Huntley 
& Bowen (1978) have recently shown field data which suggest that subharmonic edge 
waves form cusps. 

The final amplitude of the edge waves is limited by the third-order effects of finite 
amplitude detuning and radiation of edge wave energy to the far field (Guza & Bowen 
1 9 7 6 ~ ) .  The edge wave equilibrium amplitude, based on shallow water equations, is 

(1) €e 2i Bi + , 
where 6 = 6L12/g tan2/3, and Ll are the amplitude and angular frequency, respectively, 
for the incident (i) or edge (e) waves, g is gravitational acceleration, and p i s  the beach 
slope. Rockliff (1978), from a more systematic approach, developed the case of sub- 
harmonic edge waves generated by normally incident waves between reflective 
barriers and found finite amplitude effects very similar to those of Guza & Bowen 
( 1 9 7 6 ~ ) .  
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FIGURE 1. Typical strip chart record showing (a )  the unfiltered sea surface elevation, and (b )  the 
edge wave signal (incident waves having been filtered out) showing the amplitude modulation 
described in the text. 

Minzoni & Whitham ( 1977) independently reached a similar conclusion without 
resorting to shallow water approximations. Rockliff ( 1  978) presented the detailed 
algebra for the higher-order synchronous edge wave resonance suggested by Guza & 
Inman (1975). Laboratory experiments (Guza & Inman 1975) qualitatively agree with 
(1); in that the edge-wave amplitude a t  the shoreline is larger than that of the incident 
wave. The subharmonic resonance does not occur with weakly reflected incident 
waves, possibly because of increased dissipation associated with incident wave breaking 
(Guza & Bowen 19763). The work discussed above suggests that edge-wave generation 
by monochromatic, strongly reflected, normally incident waves is well understood. 

The extension of theory to non-normally incident waves is simple (Guza & Bowen 
1975; hereinafter referred to as GB75) and shows that most rapidly growing edge wave 
perturbations consist of two progressive, zero mode, edge waves propagating in 
opposite directions, but having slightly different frequencies. This results in a pseudo- 
subharmonic standing wave pattern which slowly drifts in the longshore direction. The 
theoretical shoreline configuration is given by (for the resonance having the most 
rapid initial growth rate), 

where Q is sea surface elevation, L, = 0?/4gp, Ak is the difference in longshore wave- 
numbers of the two edge waves, y = tanpsina, < I ,  a, is the deep water angle of 
incidence, f is time, and@ is the longshore direction. Terms of O(y2)  have been neglected. 
At a. fixed Q location, we should observe a pattern of subharmonic (&&) motion modu- 
lated at  the beat frequency y .  Equivalently, a given edge wave antinode should 
appear to slowly drift downcoast with speed 2gpylwi.  Experiments (described later) 
immediately revealed that the modulation frequency (or drift rate) was not that 
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predicted by theory. Figure 1 ( b ) ,  for example, shows a measured modulation period 
of 46 s compared to a theoretical value of 88 s. 

Two possible causes of the discrepancy were examined. First, since the modulation 
frequency depends on the frequencies of the excited edge waves, the condition that the 
excited edge waves be those with the maximum initial growth rate, as was implicitly 
assumed in GB75, was relaxed. This suggests a possible width of the resonant edge- 
wave frequency band. Second, the effects on the edge-wave pattern of advection by a 
mean longshore current due to the obliquely incident waves was considered. Advection 
was found to  be the most important effect. 

2. Theory 
(a)  Departures from exact resonance 

We will consider the growth of the lowest mode, almost subharmonic edge waves 
forced by obliquely incident waves, with the frequency of the edge waves slightly 
different from exact resonant coupling. We first introduce the dimensionless variables 
(circumflex referring to dimensional variables) by the definitions: 

We assume edge-wave perturbations of the form 

a), = C ai $i(z) sin (ki y + wj t + O,), 
j=1,2 

(4) 

where 

Both amplitudes, ai, and phases, Bi, can be slow functions of time. We assume that 
the resonance conditions hold : 

$, = w ~ l  exp [ - lk,Jz]. 

O.'l+o, = 1 ( 5 4  

and kl + k, = y; (5b) 

the angular frequencies, however, can each differ from those of exact resonance by a 
small constant Aw, 

and 

Edge waves with frequencies given by (6) do not exactly satisfy the linear dispersion 
relation for zero mode edge waves, and hence will have reduced initial resonant 
growth rates. These edge waves will, however, have altered modulation frequencies, 
&[&y + Awl instead of 40i y. 

Proceeding as did GB75 (however, allowing 6, to vary in t )  we obtain the following 
equations for amplitudes and phases by eliminating secular terms arising from the 
nonlinear interaction of edge and incident waves: 

_ -  dal dt - €1 6, a2 sin (el + e,), 

_ -  a2 A 4 1  + Y )  
dt a1 0 1  ' 
del - 2si 6, - cos (8, + 0,) - 
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and 

where 

and 

'a ,  _ -  - ei a, a, sin (0, + e,) 
at (74 

( 7 4  

Numerical integration shows that 8, = 8,(l + O(y)) ,  the O(y)  term resulting from 
differences in the wavenumber-frequency ratios (not fi*om the integrals). For simplicity 
and since y < 1, we will assume 6, N 6, c 6. Numerical integration of equations (7 a )  
and (7c) then shows that if al(0) + a,(O), they will rapidly approach some common 
value. Thus, we can assume a, = a, = a, and rewrite equations ( 7 )  as: 

For general initial phases (0, + O,) ,  if the right-hand side of (8 b )  ever becomes identically 
zero, then (8, + 8,) is constant, and a, grows exponentially. Only initial phases such 
that, at t = 0, d(8, + 0,) /dt  = 0 and sin (8, + 0,) < 0, do not lead to exponential growth. 
If 0,+8, never becomes constant, then a, oscillates about its initial small value 
a,(O). Thus, exponential growth occurs when 

which places an upper limit on Aw, since I cos (8, + 8,) I < 1. However, as Aw approaches 
this limit, the growth rate approaches zero (since as cos (8, + 8,) -+ 1, sin (0, + 0,) -+ 0) 
and we might. realistically expect a narrower resonant band than given by solving 
(9) for Aw,,, with cos (8, + 8,) = It: 1. We therefore numerically integrated (8) ,  solving 
for a,, arbitrarily selecting a small value of a,(O) = &(O)/&i(O) = 0.1. Equation (1) gives 
a non-dimensional equilibrium edge wave amplitude (when higher order terms limit 
growth) of a, = 4/$. Integration of (8), which does not include the higher order terms, 
was stopped when a, reached this value, and the elapsed time taken as a characteristic 
time to reach equilibrium. The characteristic times were effectively independent of 
initial phase choice and y, and are shown in figure 2. The very large times to reach 
equilibrium a t  the largest values of Aw for each ei make these formally resonant cases 
inapplicable to our laboratory experiments where no cases of very slow growth were 
observed. We therefore chose the bandwidth limits shown by circles on figure 2; these 
Aw have altered modulation times compared to Aw = 0, but basically unchanged 
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FIGURE 2. Non-dimensional time for edge waves to reach equilibrium for various values of Aw, 
c,. Circles show the approximate upper bound on Aw as discussed in the text. 

growth rates. Slightly different choices of bandwidth result from different choices of 
ae(0), but our modified bandwidths are already only qualitative. The sea surface 
elevation at the shoreline can be written (in dimensional form): 

We see that the only effect of Aw is to change the angular beat frequency by an 
amount i j i  Aw from that of the exact resonance case. 

(b)  Advection by longshore current 

A uniform steady current of velocity U will introduce a beating into a standing wave 
(observed at a fixed point) of frequency 

cg = Ee u. (11 )  

Using the edge-wave dispersion relation (0," = g/3Ee) and non-dimensionalizing, 

By observing the beating for a given situation, we can estimate the beat frequency 
of the waves alone by 

(I& = ug - wg (13) 
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where w$ is the observed beat frequency. This can be compared to that predicted 
by GB75 of 

from which a value of Aw can be estimated as 

a = BY (14) 

Am = wL-wP~. (15) 

We note that although a longshore shear current will change the 'angle' of the 
incident waves propagating over it, the longshore wavenumber ki will be conserved 
(Kenyon 1971). Since the fundamental definition of y depends only on ki and tanp, 
the current will not alter y and the theoretically predicted modulation frequency (14). 
The on-offshore shape of the incident standing wave profile, however, will be slightly 
altered by a shear current resulting in a small change in the coupling coefficient 6 
and the theoretically predicted bandwidths (figure 2 ) .  We neglect this effect. 

3. Experiments 
Experiments were performed in the Hydraulics Laboratory at  Scripps Institution 

of Oceanography. Incident waves were generated over the entire basin length (15 m) 
by a hydraulically controlled, wedge shaped plunger type paddle in water of constant, 
51 cm, depth. The beach slope, p, was 6". Wide absorbers were placed a t  the ends of 
the beach to simulate an infinitely long beach. The entire side walls were also lined 
with dissipators to reduce multiple reflexions on the incident wave. These were 
evidently effective because any re-reflexions of the obliquely incident wave would not 
be incident at  f a, and any additional excited edge waves would have a modulation 
frequency different from that of the primary edge waves. Multiple modulation 
frequencies were never observed. 

Sea surface elevation was measured with a resistance wire. Electronic filters were 
used to remove the nearly subharmonic edge wave signal from that of the incident 
waves (figure 1). Modulation times were estimated from the strip charts by averaging 
ten consecutive modulation periods. Individual modulation periods could be esti- 
mated within & 1 s and remained virtually constant throughout each average. 

The run-up due to the incident wave alone was measured to give an estimate of €1. 

Since p - 2ailR, where R is the total swash excursion, 

R GiJ 
2 SP' 

Ei N -- 

The equivalent angle of deep water incidence, a,, was calculated from the con- 
servation of longshore wavenumber: 

k, sin a, = ki sin a,, 

where k, = @/g is the deep water longshore wavenumber, ki is the incident longshore 
wavenumber at the paddle, and ap is the angle between the paddle and the un- 
disturbed shoreline. Using the linear dispersion relation for surface gravity waves, 

sin ocp 
tanh ki h' 

sina, = 

where h is the water depth a t  the paddle (51 em). 
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The effectiveness of the absorbers in preventing edge wave reflexion was verified 
in two ways. First, the measured decay time of the edge waves, after the wavemaker 
was turned off, was about the time for a progressive edge wave to travel the length of 
the beach. This indicates minimal side wall reflexion. Secondly, observation near an 
absorber showed little subharmonic amplitude modulation (unlike figure 1 observed 
in the basin centre) indicating that only a single progressive edge wave was present 
there. This also indicates low side wall reflectivity. 

We note in passing that when the edge waves reach their final equilibrium amplitude, 
there are necessarily longshore variations in edge-wave amplitude since no energy 
propagates away from the absorbers. This is of no consequence here, however, since 
the preceding analysis for amplitude growth in time can be converted to longshore 
distance co-ordinates using 

s/st = c,s/sy. 
Thus, the theory which predicts long times to reach equilibrium amplitudes, equi- 
valently predicts long non-dimensional distances and our basic conclusions about the 
effects of A u  and currents are unaltered. 

Subharmonic modulation times were measured at different locations along the 
beach, and showed no spatial dependence. Extensive measurements were made with 
different deep water angles of incidence ( -  0.16", 1 1 - l o ,  26.6') and an incident wave 
frequency of 0.48 Hz. 

The mean longshore current was crudely measured using dye and slightly positively 
buoyant spheres. Measurements were complicated by the large swash motions 
associated with the edge waves. Also, the mean current was strongest a t  the shoreline, 
rapidly decaying offshore. The mean current was estimated by placing the spheres 
in the swash, and averaging the resulting longshore velocities together. The longshore 
current was averaged over an offshore distance of about 0.6 m, which is about 0*25A, 
with A, the edge-wave wavelength. This is not an inappropriate averaging distance 
since the edge wave decays exponentially offshore, and is 0.2 of its shoreline value 
when X = +A,. The measurements of mean longshore current showed increasing 
scatter for increasing currents. For the worst cases, the standard deviation was the 
size of the mean. For the best case, am = - 0.16", dye was observed to not advect a t  
all, so the mean current was accurately taken as zero. 

4. Results 
While the theoretical development assumes that the incident waves are strongly 

reflected a t  the beach, all of the measurements reported here are cases in which 
ei 2 1 which indicates that some wave breaking occurred (Guza & Bowen 19763). 
Table 1 shows typical values of ei, U ,  uO,, wg.  For the smallest incident waves, the 
longshore current is also a minimum and it continues to increase with increasing ei, 
even though the edge-wave amplitudes are maximum for ei M 2. In  fact, a large current 
was observed even after the incident waves became so large as to cleanly break and 
prevent all edge-wave growth. This indicates that the longshore current was not the 
result of an edge-wave-edge-wave interaction, but was associated with the incident 
wave breaking. This is also supported by the large relative magnitude of the longshore 
current velocity . 
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€1 U (cm 8-l) w;; (10-8) w; ( 10-2) 
1.19 0.73 0.53 1.30 
1.69 0.96 0.70 1.53 
1.77 1.05 0.77 1.65 
2.00 1.06 0.77 1.74 
2-21 1-07 0.78 1.93 

TABLE 1. Typical values of el, U ,  w;, w i  for u, = 11.1'. Longshore 
current accounts for over 40% of w i  in all cases. 

1 .o 1.5 2.0 2.5 3.0 
Ei 

FIQURE 3. Predicted non-dimensional beat frequency (wg, solid lines) and corresponding experi- 
mental beat frequencies ( w i ,  dots) for different deepwater incident angles (a,) and 4. The vertical 
lines show estimates of typical error due to velocity measurements. 

A comparison of the calculated modulation frequency, w& = wg - w;, and the 
predicted value, wg,  is shown in figure 3 for various values of €1. The vertical error 
bars indicate typical variations in the measurements resulting from the inaccuracy of 
U as mentioned earlier. For a, = - 0.16", the observed U was too small to estimate, 
and w& = wOg N 0 in all cases. The general agreement is good which indicates that most 
of the difference between theory and observation is accountable as longshore current 
effects. The dependence of observed modulation frequency on incident wave amplitude 
simply reflects the increased longshore current. 

Figure 4 shows the estimated values of Aw [see equation (15)]  along with the approxi- 
mate theoretical bandwidth discussed in 9 2 .  We see that Aw always falls within the 
resonant frequency band. In  fact, the data suggests Am = 0, the resonance with the 
most rapid initial growth rate. This is also a very likely initial perturbation since it is 
a free wave. 

The edge-wave equilibrium amplitudes (ei < 2 )  agreed with (l),  derived for normally 
incident waves. This is expected since the coupling coefficients and other parameters 
are weak functions of y. The resonance was suppressed by excessive breaking of the 
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FIGURE 4. Theoretical and experimental A u  for different q. Solid curves represent the possible 
frequency band found from estimates as in figure 1. Vertical lines show that even within the 
experimental error, Am is always close to zero and never approaches the theoretical limits. 

incident waves (ei z 3), just as for normal incidence. The initial temporal growth rates 
of the edge waves, measured a t  a fixed location, agreed well with equations (8), with 
Aw = 0. For example, two peak amplitudes during the initial growth phase (but 
86 s apart) had an observed ratio of 4.0 compared to a theoretical value of 4.8. 

5.  Discussion 
Additional experiments with reflecting sidewalls showed rather bizarre edge wave 

behaviour. The modulation period sometimes never reached a stable value, slowly 
varying for hours. For cases in which a constant modulation period occurred, small 
changes in barrier spacing sometimes led to large changes in modulation period. 
Certain configurations led to a single standing subharmonic wave. 

The above behaviour can be qualitatively understood by observing that the 
theoretical band width Ammax is generally larger than the frequency splitting intro- 
duced by non-normal incidence, Sy. Typically, y = tanpsin a, - 0.02 while 

Ammax > 0.02 

even for ci = 1.  Since the edge waves are standing, and must satisfy the side wall 
boundary conditions, the longshore wavenumbers are fixed. Thus, it  will not generally 
be possible for the edge waves to simultaneously satisfy the resonance condition ( 5 a )  
and the edge wave dispersion relation [equivalent to Aw = 0 in equation (S)]. If (5a )  
is not satisfied, the individual edge wave amplitudes and phases will never reach 
constant values, and neither will the apparent modulation frequency. If ( 5 a )  is 
satisfied, then Aw will generally be non-zero. Since Aw can be the size of +y) a wide 
range of modulation frequencies, &y + Aw, is possible. For example, if Am = - +y)  both 
progressive waves are subharmonic and there is no temporal amplitude modulation. 
The basic conclusion is that the sidewall boundary conditions, coupled with the 
relatively large resonant band width, make the excited edge-wave frequencies un- 
predictable. 
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Experiments with sand tracers demonstrated that migrating beach cusps were not 
formed by a drifting standing edge wave pattern. This is not surprising since the 
number of subharmonic edge-wave periods for a given antinode to drift one wave- 
length is y-l, in the absence of longshore currents. Observations show an even faster 
migration rate due to advection by currents. For these experiments y-l x 50, which 
is evidently not a long enough time for the sand tracers to respond. Even for the 
hypothetical case of small angle of incidence (a ,  = 4") and gentle beach slope (p  = Z " ) ,  
y-l M 400, which implies that an antinodal location becomes a node every 100 sub- 
harmonic periods. Based on cusp formation times with normally incident waves, and 
stationary standing edge waves, this does not appear long enough to develop cusps 
which might conceivably migrate with the edge-wave pattern. It is rather surprising, 
therefore (assuming subharmonic edge waves do indeed cause beach cusps) that cusps 
ever form on beaches without reflective barriers at  one or both ends. The requirement 
of almost exactly normal incidence (or symmetry about normal incidence) seems so 
very restrictive that it could rarely be satisfied. 

6.  Conclusions 
Experiments with partially reflected waves, obliquely incident on a plane beach, 

show that the primary waves are unstable to perturbation by edge waves. The 
observed resonant edge-wave frequencies are close to that predicted by Guza & 
Bowen (1 975), provided that longshore advection by mean currents resulting from 
partial wave breaking is taken into account. A bandwidth for possible edge-wave 
resonances is determined theoretically, but observations with absorbing sidewall 
boundaries suggest that only the edge waves with the maximum initial growth rate 
are excited. With reflecting sidewalls, the excited waves are scattered across the 
possible resonant band. 

This study was supported by National Science Foundation Grant no. ENG 76-14859. 
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